Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2303598

ABSTRACT

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Uncertainty , Disease Outbreaks/prevention & control , Public Health , Pandemics/prevention & control
2.
Lancet Reg Health Am ; 17: 100398, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2122676

ABSTRACT

Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).

3.
Elife ; 112022 06 21.
Article in English | MEDLINE | ID: covidwho-1903837

ABSTRACT

In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2/genetics , United States/epidemiology , Vaccination
4.
Proc Natl Acad Sci U S A ; 119(26): e2112182119, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1890404

ABSTRACT

Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic's first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs). Although mass gatherings present an important risk for SSEs, we estimate that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places most important for transmission change during the pandemic and are different across cities, signaling the large underlying behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that real-time tracking of transmission events could help evaluate and define targeted mitigation policies.


Subject(s)
COVID-19 , Contact Tracing , SARS-CoV-2 , COVID-19/transmission , Humans , New York City/epidemiology , Pandemics , Population Dynamics , Time Factors , Washington/epidemiology
5.
PLoS Comput Biol ; 18(5): e1010146, 2022 05.
Article in English | MEDLINE | ID: covidwho-1865329

ABSTRACT

We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2 in Italy by using a computational epidemic model which takes into account demographic, mobility, vaccines data, as well as estimates of the introduction and spreading of the more transmissible Alpha variant. We consider six sub-national regions and study the effect of vaccines in terms of number of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR: [16, 454-42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564-6, 980, 070]) infections and a new pandemic wave in the country. During the same period, they achieved a -22.2% (IQR: [-31.4%; -13.9%]) IFR reduction. We show that a campaign that would have strictly prioritized age groups at higher risk of dying from COVID-19, besides frontline workers and the fragile population, would have implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies targeting the most active age groups would have prevented a higher number of infections but would have been associated with more deaths. Finally, we study the effects of different vaccination intake scenarios by rescaling the number of available doses in the time period under study to those administered in other countries of reference. The modeling framework can be applied to other countries to provide a mechanistic characterization of vaccination campaigns worldwide.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization Programs , Italy/epidemiology , SARS-CoV-2 , Vaccination
6.
Lancet Reg Health Am ; 8: 100182, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1620909

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccines are administered worldwide, the COVID-19 pandemic continues to exact significant human and economic costs. Mass testing of unvaccinated individuals followed by isolation of positive cases can substantially mitigate risks and be tailored to local epidemiological conditions to ensure cost effectiveness. METHODS: Using a multi-scale model that incorporates population-level SARS-CoV-2 transmission and individual-level viral load kinetics, we identify the optimal frequency of proactive SARS-CoV-2 testing, depending on the local transmission rate and proportion immunized. FINDINGS: Assuming a willingness-to-pay of US$100,000 per averted year of life lost (YLL) and a price of $10 per test, the optimal strategy under a rapid transmission scenario (Re ∼ 2.5) is daily testing until one third of the population is immunized and then weekly testing until half the population is immunized, combined with a 10-day isolation period of positive cases and their households. Under a low transmission scenario (Re ∼ 1.2), the optimal sequence is weekly testing until the population reaches 10% partial immunity, followed by monthly testing until 20% partial immunity, and no testing thereafter. INTERPRETATION: Mass proactive testing and case isolation is a cost effective strategy for mitigating the COVID-19 pandemic in the initial stages of the global SARS-CoV-2 vaccination campaign and in response to resurgences of vaccine-evasive variants. FUNDING: US National Institutes of Health, US Centers for Disease Control and Prevention, HK Innovation and Technology Commission, China National Natural Science Foundation, European Research Council, and EPSRC Impact Acceleration Grant.

7.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750498

ABSTRACT

We use a global metapopulation transmission model to study the establishment of sustained and undetected community transmission of the COVID-19 epidemic in the United States. The model is calibrated on international case importations from mainland China and takes into account travel restrictions to and from international destinations. We estimate widespread community transmission of SARS-CoV-2 in February, 2020. Modeling results indicate international travel as the key driver of the introduction of SARS-CoV-2 in the West and East Coast metropolitan areas that could have been seeded as early as late-December, 2019. For most of the continental states the largest contribution of imported infections arrived through domestic travel flows.

8.
Nature ; 600(7887): 127-132, 2021 12.
Article in English | MEDLINE | ID: covidwho-1483136

ABSTRACT

Considerable uncertainty surrounds the timeline of introductions and onsets of local transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) globally1-7. Although a limited number of SARS-CoV-2 introductions were reported in January and February 2020 (refs.8,9), the narrowness of the initial testing criteria, combined with a slow growth in testing capacity and porous travel screening10, left many countries vulnerable to unmitigated, cryptic transmission. Here we use a global metapopulation epidemic model to provide a mechanistic understanding of the early dispersal of infections and the temporal windows of the introduction of SARS-CoV-2 and onset of local transmission in Europe and the USA. We find that community transmission of SARS-CoV-2 was likely to have been present in several areas of Europe and the USA by January 2020, and estimate that by early March, only 1 to 4 in 100 SARS-CoV-2 infections were detected by surveillance systems. The modelling results highlight international travel as the key driver of the introduction of SARS-CoV-2, with possible introductions and transmission events as early as December 2019 to January 2020. We find a heterogeneous geographic distribution of cumulative infection attack rates by 4 July 2020, ranging from 0.78% to 15.2% across US states and 0.19% to 13.2% in European countries. Our approach complements phylogenetic analyses and other surveillance approaches and provides insights that can be used to design innovative, model-driven surveillance systems that guide enhanced testing and response strategies.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Epidemiological Models , SARS-CoV-2/isolation & purification , Air Travel/statistics & numerical data , COVID-19/mortality , COVID-19/virology , China/epidemiology , Disease Outbreaks/statistics & numerical data , Europe/epidemiology , Humans , Population Density , Time Factors , United States/epidemiology
9.
MMWR Morb Mortal Wkly Rep ; 70(19): 719-724, 2021 May 14.
Article in English | MEDLINE | ID: covidwho-1229499

ABSTRACT

After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/therapy , Hospitalization/statistics & numerical data , Models, Statistical , Public Policy , Vaccination/statistics & numerical data , COVID-19/mortality , COVID-19/prevention & control , Forecasting , Humans , Masks , Physical Distancing , United States/epidemiology
10.
Lancet Public Health ; 6(3): e184-e191, 2021 03.
Article in English | MEDLINE | ID: covidwho-1065700

ABSTRACT

BACKGROUND: To mitigate the COVID-19 pandemic, countries worldwide have enacted unprecedented movement restrictions, physical distancing measures, and face mask requirements. Until safe and efficacious vaccines or antiviral drugs become widely available, viral testing remains the primary mitigation measure for rapid identification and isolation of infected individuals. We aimed to assess the economic trade-offs of expanding and accelerating testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across the USA in different transmission scenarios. METHODS: We used a multiscale model that incorporates SARS-CoV-2 transmission at the population level and daily viral load dynamics at the individual level to assess eight surveillance testing strategies that varied by testing frequency (from daily to monthly testing) and isolation period (1 or 2 weeks), compared with the status-quo strategy of symptom-based testing and isolation. For each testing strategy, we first estimated the costs (incorporating costs of diagnostic testing and admissions to hospital, and salary lost while in isolation) and years of life lost (YLLs) prevented under rapid and low transmission scenarios. We then assessed the testing strategies across a range of scenarios, each defined by effective reproduction number (Re), willingness to pay per YLL averted, and cost of a test, to estimate the probability that a particular strategy had the greatest net benefit. Additionally, for a range of transmission scenarios (Re from 1·1 to 3), we estimated a threshold test price at which the status-quo strategy outperforms all testing strategies considered. FINDINGS: Our modelling showed that daily testing combined with a 2-week isolation period was the most costly strategy considered, reflecting increased costs with greater test frequency and length of isolation period. Assuming a societal willingness to pay of US$100 000 per YLL averted and a price of $5 per test, the strategy most likely to be cost-effective under a rapid transmission scenario (Re of 2·2) is weekly testing followed by a 2-week isolation period subsequent to a positive test result. Under low transmission scenarios (Re of 1·2), monthly testing of the population followed by 1-week isolation rather than 2-week isolation is likely to be most cost-effective. Expanded surveillance testing is more likely to be cost-effective than the status-quo testing strategy if the price per test is less than $75 across all transmission rates considered. INTERPRETATION: Extensive expansion of SARS-CoV-2 testing programmes with more frequent and rapid tests across communities coupled with isolation of individuals with confirmed infection is essential for mitigating the COVID-19 pandemic. Furthermore, resources recouped from shortened isolation duration could be cost-effectively allocated to more frequent testing. FUNDING: US National Institutes of Health, US Centers for Disease Control and Prevention, and Love, Tito's.


Subject(s)
COVID-19 Testing/economics , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Cost-Benefit Analysis , Humans , Models, Theoretical , United States/epidemiology
11.
PLoS One ; 15(9): e0238214, 2020.
Article in English | MEDLINE | ID: covidwho-781641

ABSTRACT

Brazil detected community transmission of COVID-19 on March 13, 2020. In this study we identified which areas in the country were the most vulnerable for COVID-19, both in terms of the risk of arrival of cases, the risk of sustained transmission and their social vulnerability. Probabilistic models were used to calculate the probability of COVID-19 spread from São Paulo and Rio de Janeiro, the initial hotspots, using mobility data from the pre-epidemic period, while multivariate cluster analysis of socio-economic indices was done to identify areas with similar social vulnerability. The results consist of a series of maps of effective distance, outbreak probability, hospital capacity and social vulnerability. They show areas in the North and Northeast with high risk of COVID-19 outbreak that are also highly socially vulnerable. Later, these areas would be found the most severely affected. The maps produced were sent to health authorities to aid in their efforts to prioritize actions such as resource allocation to mitigate the effects of the pandemic. In the discussion, we address how predictions compared to the observed dynamics of the disease.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Models, Theoretical , Morbidity/trends , Pneumonia, Viral/transmission , Brazil/epidemiology , COVID-19 , Cluster Analysis , Coronavirus Infections/epidemiology , Disease Outbreaks/statistics & numerical data , Forecasting/methods , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Socioeconomic Factors
12.
Emerg Infect Dis ; 26(11): e1-e14, 2020 11.
Article in English | MEDLINE | ID: covidwho-760831

ABSTRACT

We report key epidemiologic parameter estimates for coronavirus disease identified in peer-reviewed publications, preprint articles, and online reports. Range estimates for incubation period were 1.8-6.9 days, serial interval 4.0-7.5 days, and doubling time 2.3-7.4 days. The effective reproductive number varied widely, with reductions attributable to interventions. Case burden and infection fatality ratios increased with patient age. Implementation of combined interventions could reduce cases and delay epidemic peak up to 1 month. These parameters for transmission, disease severity, and intervention effectiveness are critical for guiding policy decisions. Estimates will likely change as new information becomes available.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Models, Statistical , Models, Theoretical , Pneumonia, Viral/epidemiology , COVID-19 , Coronavirus Infections/transmission , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
13.
Vaccine ; 38(46): 7213-7216, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-759423

ABSTRACT

To rapidly evaluate the safety and efficacy of COVID-19 vaccine candidates, prioritizing vaccine trial sites in areas with high expected disease incidence can speed endpoint accrual and shorten trial duration. Mathematical and statistical forecast models can inform the process of site selection, integrating available data sources and facilitating comparisons across locations. We recommend the use of ensemble forecast modeling - combining projections from independent modeling groups - to guide investigators identifying suitable sites for COVID-19 vaccine efficacy trials. We describe an appropriate structure for this process, including minimum requirements, suggested output, and a user-friendly tool for displaying results. Importantly, we advise that this process be repeated regularly throughout the trial, to inform decisions about enrolling new participants at existing sites with waning incidence versus adding entirely new sites. These types of data-driven models can support the implementation of flexible efficacy trials tailored to the outbreak setting.


Subject(s)
Betacoronavirus/immunology , Clinical Trials as Topic/methods , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/adverse effects , Viral Vaccines/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Forecasting/methods , Humans , Models, Theoretical , SARS-CoV-2
14.
Nat Hum Behav ; 4(9): 964-971, 2020 09.
Article in English | MEDLINE | ID: covidwho-695170

ABSTRACT

While severe social-distancing measures have proven effective in slowing the coronavirus disease 2019 (COVID-19) pandemic, second-wave scenarios are likely to emerge as restrictions are lifted. Here we integrate anonymized, geolocalized mobility data with census and demographic data to build a detailed agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in the Boston metropolitan area. We find that a period of strict social distancing followed by a robust level of testing, contact-tracing and household quarantine could keep the disease within the capacity of the healthcare system while enabling the reopening of economic activities. Our results show that a response system based on enhanced testing and contact tracing can have a major role in relaxing social-distancing interventions in the absence of herd immunity against SARS-CoV-2.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/statistics & numerical data , Contact Tracing/statistics & numerical data , Coronavirus Infections/epidemiology , Infection Control/statistics & numerical data , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Boston/epidemiology , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Family Characteristics , Hospitalization/statistics & numerical data , Humans , Infection Control/methods , Models, Statistical , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , SARS-CoV-2
15.
Science ; 368(6489): 395-400, 2020 04 24.
Article in English | MEDLINE | ID: covidwho-5137

ABSTRACT

Motivated by the rapid spread of coronavirus disease 2019 (COVID-19) in mainland China, we use a global metapopulation disease transmission model to project the impact of travel limitations on the national and international spread of the epidemic. The model is calibrated on the basis of internationally reported cases and shows that, at the start of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers. The travel quarantine of Wuhan delayed the overall epidemic progression by only 3 to 5 days in mainland China but had a more marked effect on the international scale, where case importations were reduced by nearly 80% until mid-February. Modeling results also indicate that sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.


Subject(s)
Betacoronavirus , Communicable Diseases, Imported/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Quarantine , Travel , COVID-19 , China/epidemiology , Communicable Diseases, Imported/prevention & control , Communicable Diseases, Imported/transmission , Computer Simulation , Coronavirus Infections/prevention & control , Disease Outbreaks , Humans , Incidence , Internationality , Models, Statistical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL